lunes, 23 de febrero de 2015

American Chemical Society



La American Chemical Society (ACS) o Sociedad Estadounidense de Química es una sociedad científica (colegio profesional) con sede en los Estados Unidos que apoya la investigación científica en el campo de la Química. Fue fundada en 1876 en la Universidad de Nueva York. En la actualidad cuenta con unos 160,000 miembros de todos los grados académicos, en los campos de la Químicaingeniería química, y otros relacionados.
La ACS es una organización sin ánimo de lucro. La ACS celebra dos convenciones nacionales al año cubriendo el ámbito de toda la Química. También celebra docenas de congresos de menor tamaño en campos específicos. Su división de publicaciones edita varias revistas de ámbito académico entre las que destaca Journal of the American Chemical Society. La fuente primaria de ingresos de la ACS es el Chemical Abstracts Service (un servicio de resúmenes de artículos científicos sobre química publicados en cualquier revista científica) y sus publicaciones. Chemical & Engineering News es la revista de actualidad semanal publicada por la American Chemical Society y enviada a todos sus miembros. Los miembros de la ACS se organizan en 189 secciones geográficas locales y 33 divisiones técnicas.

domingo, 15 de febrero de 2015

Alexander Fleming



Alexander Fleming (DarvelEscocia6 de agosto de 1881-Londres11 de marzo de 1955) fue un científico escocés famoso por descubrir la enzima antimicrobiana llamada lisozima. También fue el primero en observar los efectos antibióticos de la penicilina obtenidos a partir del hongo Penicillium chrysogenum.

Durante la guerra fue médico militar en los frentes de Francia y quedó impresionado por la gran mortalidad causada por las heridas de metralla infectadas (p. ej., gangrena gaseosa) en los hospitales de campaña. Finalizada la guerra, regresó al Hospital St. Mary donde buscó intensamente un nuevo antiséptico que evitase la dura agonía provocada por las heridas infectadas.
Los dos descubrimientos de Alexander ocurrieron en los años veinte y aunque fueron accidentales demuestran la gran capacidad de observación e intuición de este médico escocés. Descubrió la lisozima durante sus investigaciones de un tratamiento a la gangrena gaseosa que diezmaba a los combatientes en las guerras; el descubrimiento ocurrió después de que mucosidades, procedentes de un estornudo, cayesen sobre una placa de Petri en la que crecía un cultivo bacteriano. Unos días más tarde notó que las bacterias habían sido destruidas en el lugar donde se había depositado el fluido nasal.
El laboratorio de Fleming estaba habitualmente desordenado, lo que resultó una ventaja para su siguiente descubrimiento. En septiembre de 1928, estaba realizando varios experimentos en su laboratorio y el día 22, al inspeccionar sus cultivos antes de destruirlos notó que la colonia de un hongo había crecido espontáneamente, como un contaminante, en una de las placas de Petri sembradas con Staphylococcus aureus. Fleming observó más tarde las placas y comprobó que las colonias bacterianas que se encontraban alrededor del hongo (más tarde identificado como Penicillium notatum) eran transparentes debido a una lisis bacteriana. Para ser más exactos, Penicillium es un moho que produce una sustancia natural con efectos antibacterianos: la penicilina. La lisis significaba la muerte de las bacterias, y en su caso, la de las bacterias patógenas (Staphylococcus aureus) crecidas en la placa. Aunque él reconoció inmediatamente la trascendencia de este hallazgo sus colegas lo subestimaron. Fleming comunicó su descubrimiento sobre la penicilina en el British Journal of Experimental Pathology en 1929.
Fleming trabajó con el hongo durante un tiempo pero la obtención y purificación de la penicilina a partir de los cultivos dePenicillium notatum resultaron difíciles y más apropiados para los químicos. La comunidad científica creyó que la penicilina sólo sería útil para tratar infecciones banales y por ello no le prestó atención.
Fleming no patentó su descubrimiento creyendo que así sería más fácil la difusión de un antibiótico necesario para el tratamiento de las numerosas infecciones que azotaban a la población. Por sus descubrimientos, Fleming compartió el Premio Nobel de Medicina en 1945 junto a Ernst Boris Chain y Howard Walter Florey.Sin embargo, el antibiótico despertó el interés de los investigadores estadounidenses durante la Segunda Guerra Mundial, quienes intentaban emular a la medicina militar alemana la cual disponía de las sulfamidas. Los químicos Ernst Boris Chain yHoward Walter Florey desarrollaron en Inglaterra un método de purificación de la penicilina que permitió su síntesis y distribución comercial para el resto de la población, sin embargo, este país tenía la totalidad de sus infraestructuras industriales dedicadas a las necesidades de la guerra. Por este motivo, ambos investigadores acudieron a Estados Unidos a poner en marcha plantas de producción dedicadas exclusivamente a la penicilina.
Fleming fue miembro del Chelsea Arts Club, un club privado para artistas fundado en 1891 por sugerencia del pintor James McNeil Whistler. Se cuenta como anécdota que Fleming fue admitido en el club después de realizar "pinturas con gérmenes", pinturas que consistían en pincelar el lienzo con bacterias pigmentadas, las cuales eran invisibles mientras pintaba pero surgían con intensos colores una vez crecidas después de incubar el lienzo. Las especies bacterianas que utilizaba eran:
  • Serratia marcescens - rojo
  • Chromobacterium violaceum - púrpura
  • Micrococcus luteus - amarillo
  • Micrococcus varians - blanco
  • Micrococcus roseus - rosa
  • Bacillus sp. - naranja
Estando de gira por España, en 1948, enferma su esposa del mal que truncaría su vida meses después. Con todo, continúa su trabajo en el Instituto del St. Mary (Saint Mary's College) que dirige desde 1946. Allí colabora una joven griega, la Dra. Voureka, por la que Fleming siente gran estima; cuando ésta regresa a su país, Fleming, ya solo, se ve arrastrado por su recuerdo e irá por ella para hacerla su esposa en 1953.
Alexander Fleming murió en Londres en 1955 de un ataque cardíaco. Fue enterrado como héroe nacional en la cripta de la Catedral de San Pablo de Londres.
Su descubrimiento de la penicilina significó un cambio drástico para la medicina moderna iniciando la llamada «Era de los antibióticos», otros investigadores posteriores aportaron nuevos antibióticos, como la estreptomicina utilizada para el tratamiento de la tuberculosis, salvando millones de vidas. El aporte científico de Fleming es doble pues además de descubrir una molécula química (penicilina) también encontró una molécula enzimática (lisozima) con actividad antibiótica. Las enzimas (ej. lisozima) y los péptidos antibióticos son componentes naturales de la inmunidad innata de los animales que podrían ser utilizados con fines terapéuticos similares a la penicilina. Por esta razón Fleming puede ser considerado como el primero en descubrir una enzima antimicrobiana.

jueves, 5 de febrero de 2015

ADN



El ácido desoxirribonucleico, abreviado como ADN, es un ácido nucleico que contiene instrucciones genéticas usadas en el desarrollo y funcionamiento de todos los organismos vivos conocidos y algunos virus, y es responsable de su transmisión hereditaria. La función principal de la molécula de ADN es el almacenamiento a largo plazo de información. Muchas veces, el ADN es comparado con un plano o una receta, o un código, ya que contiene las instrucciones necesarias para construir otros componentes de las células, como las proteínas y las moléculas de ARN. Los segmentos de ADN que llevan esta información genética son llamados genes, pero las otras secuencias de ADN tienen propósitos estructurales o toman parte en la regulación del uso de esta información genética.
Desde el punto de vista químico, el ADN es un polímero de nucleótidos, es decir, un polinucleótido. Un polímero es un compuesto formado por muchas unidades simples conectadas entre sí, como si fuera un largo tren formado por vagones. En el ADN, cada vagón es un nucleótido, y cada nucleótido, a su vez, está formado por un azúcar (la desoxirribosa), una base nitrogenada (que puede ser adeninaA,timinaTcitosinaC o guaninaG) y un grupo fosfato que actúa como enganche de cada vagón con el siguiente. Lo que distingue a un vagón (nucleótido) de otro es, entonces, la base nitrogenada, y por ello la secuencia del ADN se especifica nombrando sólo la secuencia de sus bases. La disposición secuencial de estas cuatro bases a lo largo de la cadena (el ordenamiento de los cuatro tipos de vagones a lo largo de todo el tren) es la que codifica la información genética: por ejemplo, una secuencia de ADN puede ser ATGCTAGATCGC... En los organismos vivos, el ADN se presenta como una doble cadena de nucleótidos, en la que las dos hebras están unidas entre sí por unas conexiones denominadas puentes de hidrógeno.
Para que la información que contiene el ADN pueda ser utilizada por la maquinaria celular, debe copiarse en primer lugar en unos trenes de nucleótidos, más cortos y con unas unidades diferentes, llamados ARN. Las moléculas de ARN se copian exactamente del ADN mediante un proceso denominado transcripción. Una vez procesadas en el núcleo celular, las moléculas de ARN pueden salir al citoplasma para su utilización posterior. La información contenida en el ARN se interpreta usando el código genético, que especifica la secuencia de los aminoácidos de las proteínas, según una correspondencia de un triplete de nucleótidos (codón) para cada aminoácido. Esto es, la información genética (esencialmente: qué proteínas se van a producir en cada momento del ciclo de vida de una célula) se halla codificada en las secuencias de nucleótidos del ADN y debe traducirse para poder funcionar. Tal traducción se realiza usando el código genético a modo de diccionario. El diccionario "secuencia de nucleótido-secuencia de aminoácidos" permite el ensamblado de largas cadenas de aminoácidos (las proteínas) en el citoplasma de la célula. Por ejemplo, en el caso de la secuencia de ADN indicada antes (ATGCTAGATCGC...), la ARNpolimerasa utilizaría como molde la cadena complementaria de dicha secuencia de ADN (que sería TAC-GAT-CTA-GCG-...) para transcribir una molécula de ARNm que se leería AUG-CUA-GAU-CGC-... ; el ARNm resultante, utilizando el código genético, se traduciría como la secuencia de aminoácidos metionina-leucina-ácido aspártico-arginina-...
Las secuencias de ADN que constituyen la unidad fundamental, física y funcional de la herencia se denominan genes. Cada gen contiene una parte que se transcribe a ARN y otra que se encarga de definir cuándo y dónde deben expresarse. La información contenida en los genes (genética) se emplea para generar ARN y proteínas, que son los componentes básicos de las células, los "ladrillos" que se utilizan para la construcción de los orgánulos u organelos celulares, entre otras funciones.
Dentro de las células, el ADN está organizado en estructuras llamadas cromosomas que, durante el ciclo celular, se duplican antes de que la célula se divida. Los organismos eucariotas (por ejemplo, animalesplantas, y hongos) almacenan la mayor parte de su ADN dentro del núcleo celular y una mínima parte en elementos celulares llamados mitocondrias, y en los plastos y los centros organizadores de microtúbulos o centríolos, en caso de tenerlos; los organismos procariotas (bacterias y arqueas) lo almacenan en el citoplasma de la célula, y, por último, los virus ADN lo hacen en el interior de la cápsida de naturaleza proteica. Existen multitud de proteínas, como por ejemplo las histonas y los factores de transcripción, que se unen al ADN dotándolo de una estructura tridimensional determinada y regulando su expresión. Los factores de transcripción reconocen secuencias reguladoras del ADN y especifican la pauta de transcripción de los genes. El material genético completo de una dotación cromosómica se denomina genoma y, con pequeñas variaciones, es característico de cada especie.